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Formd W p t i o n  Techniques 

I. INTRODUCTION 

A.  OSI Background  and  Framework 

E ARLY IN the  development of  OSI, it was  recognized that 
if goals of  OS1  were to be accomplished,  formal  descrip- 
tion  techniques (FDTs) would be required to ensure that 

implementors  anywhere in the  world can develop  correct  and 
compatible  implementations. 
As eminently  described  by John Day,  the  first  Rapporteur on 

FDT, in hex E of an  early  version of the  Reference  Model  for 
Open Systems  Interconnection (SC16/N227), FDTs are neces- 
sary to provide: 

an unambiguous, clear, and concise specification of a  service, 

a  basis  for  determining  the completeness of the  specification; 
a  foundation  for  the analysis of the speafication as to its 

a  basis  for  the uetification that the  specification  meets  all of the 

a  basis  for  determining  the conformance of implementations to 

a  basis  for  determining  the comisteng of  OS1 standards with 

a  basis for developing implementation support. 

Many of these  goals  are  crucial to the  development of compati- 
ble  implementations. If formal  techniques  are  not  available,  the 
usefulness of  OS1 standards will be greatly  reduced. 

The  issues  involved  with FDT are rather  abstract in nature  and 
not  intended  to  produce  the  contents of the  technical speafica- 
tion of the  Reference  Model  or  the  protocols  and  services  for 
each  layer. This was the  reason Working Group 1 (WG1) formed 
a  separate  group on FDT. 

The  first  meeting of the FDT group was in Chicago, IL, in 

protocol,  interface,  or  the  Reference  Model; 

correctness,  efficiency,  etc.; 

requirements of the  OSI; 

the OS1 standard specification; 

each other; 
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January 1980. Since  then meetings have  taken  place in Amster- 
dam, The  Netherlands, in June 1980; Berlin, Germany, in 
February 1981; Washqton, D C ,  in October 1981; Enschede, 
The  Netherlands, in April 1982; Catania,  Italy, in November 
1982; and Paris, France, in February 1983. Minutes, Rec- 
ommendations, and other relevant  working  documents  have been 
distributed as regular SC16 documents. 

This paper gives an overview  of the  work on FDTs for OS1 
specifications as carried out by  the I S 0  TC97/Sc16/WGl-ad 
hoc  group on Formal  Description  Techniques as of December 
1982. A companion  article in this issue, by G. Dickson and P. de 
Chazal, gives an overview  of corresponding  activities  by  the 
CCITT. 

B. Early Work 

The  FDT group  quite  rapidly  observed  that  the  Reference 
Model  and  associated  protocols and services  presented  a  major 
challenge  for  formal specification and  concluded that the  group 
could  not  simply adapt  an existing  technique  to fit OS1 require- 
ments. In order to provide  immediate  support for the  technical 
woriung  groups  while  formal  methods  were bemg developed,  the 
group  began  by  drafting  guidelines  for  the  informal speafication 
of protocols  and  services. These guidelines  served two purposes: 
on one  hand as an aid  to  the  technical w o w  groups  to 
promote  structure,  consistency,  and  completeness,  and on the 
other  hand to achieve  homogeneously  structured  specifications 
among  different  layers which  would be much  easier to specify 
formally  once  adequate  formal  techniques  were  available. 

Although  the  informal  guidelines  absorbed  most of the  first 
two meetings,  the  group also produced  a  work  plan,  a  set  of 
criteria  for  evaluation of an FDT, and  a  first  categorization of 
different FDTs. 

C. Forming of Subgroups 

One of the  difficult  problems  confronting  the FDT group  was 
to converge  the  many  divergent  views on what FDT concept.@) 
should  form  the  basis  for OS1 application, in particular in the 
light of the  likely  possibility  that  a  certain  concept  may be 
appropriate for one  layer but inadequate  for  other  layers.  The 
FDT group has solved this problem  by  forming  Subgroups around 
corresponding FDT concepts and charging  each  Subgroup  to 
come up with  one  proposal, in much  the  same  way that a 
technical  working  group  converges to a common solution.  The 
FDT group  expects  that  different FDTs are likely  to be used 
together,  complementing  each  other,  rather than competing  with 
each  other.  Moreover,  the FDT group assumes that  growing 
insight  may  raise  the need for  even  newer  techniques  and Sub- 
groups, whose results may stepwise replace  techniques  now  under 
development. 
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The three Subgroups thus formed during the Berlin (February 
1981) meeting are!: 

1) Subgroup A (chaired by  Gregor V. BochmaM), dealing with 
architectural speufication concepts which  (may)  serve as the 
architectural basis for the description languages developed  by 
Subgroups B and C. 

2) Subgroup B (chaired by Richard L. T e ~ e y ) ,  dealing  with 
the  development  of an FDT based on the Extended Finite State 
Machine concept. 

3) Subgroup C ( c h a i r e d  by Chris A. Vissers), dealing  with  the 
development of an FDT based on the  Temporal  Ordering of 
Interaction primitives. 

Liaison is maintained with appropriate groups (VII/Q27, 
VII/Q39,  XI/3-1) within  the CCITT. This applies in particular 
to  Subgroup B, as its FDT exbibits features similar to the SDL 
technique  developed  by  the CCITT. 

A more  detailed s u m m a r y  of each Subgroup’s activity  follows 
this introduction. For a detailed  insight in the  technical concepts 
the  reader is referred to the tutorial documents of the  Subgroups. 

D. Tutorial Docwnmts 

In order to work in a coherent way, the Subgroups have agreed 
to produce, for each FDT, a so-called “tutorial” document, each 
of  which  follows  the same outline. In addition, s;bgroup A has 
the  charge  of promoting the use of identical architectural con- 
cepts by each Subgroup, in so f a r  as this is possl%le. ?he tutorial 
documents  should be self-contained and provide  sufficient 
material for an OS1 expert to learn, appreciate, and apply  the 
FDT. The outline of  the tutorial documents is as follows: 

1) Introduction. This chapter introduces the main concepts, 
purpose, and philosophy u n d e r l a  the FDT. 

2) M d l .  This chapter provides  the fmdamental basis of the 
language in an informal, i.e.,  intuitive,  way and provides  the 
platform  for  the other chapters. 

3) Language Elemmts. This chapter gives  the FDT language by 
giving  the notation and  the informal semantics of  the language 
elements. It illustrates the use of the  language  with small exam- 
ples. In addition, short guidelines for the  implementor as well as 
for the speafier are given. 

4) Formal Syntax. The syntax s u m m a r y  of Chapter 3. 
5 )  Formal Semanticr. The formal semantics  provides  the formal 

and mathematical  basis for the FDT and  the  ultimate arbitration 
for interpreting the  language  elements. It provides rules of 
mathematical  manipulation that are used in Chapters 6 and 7. 

6 )  Integration  Rules. This chapter provides proof rules (verifica- 
tion rules) for c h e c k  that an (N)-service is rendered  by an 
( N  - 1)-senice and an (N)-protocol. 

7) Confornu’.ty Rules. This chapter provides  the proof rules for 
checlung that an implementation  complies  with a specification. 

8) Terminology. 
Annex 1: User Guiaklines. These guidelines  give  detailed hints 

to the  implementor to interpret specific  language constructs in 
the light of simplifying implementations,  etc. In the  same  way 
hints may be given to the speufier to represent  frequently used 
technical constructs. 

Annex 2: Applications to Draft St&&. The FDT group  has 
agreed to provide at least some trial speufications of Transport 
Layer standards to demonstrate the use of the FDT in complex 

Annex 3: Language  Support Took. In the  long  term, an FDT 
may be supported by  automated  tools  for designin& manipulat- 
ing, and assessing specifications and implementations. 

SpeclfiC2ltiOns. 

Annex 4: Check Against Ernhation Criteria. This Annex is 
used to assess the FDT against the set of evaluation criteria 

Annex 5:  Relation to Altermatice M d l s .  This Armex is used to 
indicate differeoces, comespond-, and/or compatibility be- 
tween different FDT”s, and may provide translation rules. 

other Annexes if necessary. 

E. Statw 

The  Subgroups  have  produced elaborate tutorial documents, 
and  the  proposed FDTs are in a state  in which trial speufica- 
tions can be p r o d u d  In addition, the group themselves have 
produced and are preparing major  examples  and applications to 
draft standards, particularly at Transport level, to demonstrate 
the  features and applicability of the techniques. Some crucial 
aspects such as the proving that an implementation  complies  with 
a speufication have not been addressed in full, and work on these 
issues is continuing. 

The  following  sections  briefly introduce the main concepts of 
each  technique.  The  reader is referred to the most recent tutorial 
documents  for a detailed  insight. 

11. SUBGROUP A: ARCHITECTUIUL CONCEPTS 

A .  Objectives and Main Features of FDT  Developed 

The objectives of the  work in Subgroup A are  twofold: 1) the 
development of architectural specification concepts which may 
serve as a basis  for  the  description  languages  developed  by 
Subgroups B and C, and 2) the coordination of the  developments 
in Subgroups B and C in order to make it possible that subsystem 
specifications give-n in the languages of Subgroups B and C can 
be combined into a mgle system speafication  in a meamgfd 
way. The latter is called in the  following “interworking between 
Subgroup B and C languages.” 

The main specrfication concepts defined by Subgroup A are 
“modules” and  “channels.” A module is a unit of specification. 
Its behavior  may be defined using the  languages  of Subgroup B 
or C, or it may be defined in terms of a “refinement,” that is a 
structure of interconnected  submodules. Each submodule, in turn, 
must be speafied. Modules (and/or submodules) interact with 
each  other through channels.  The  channel specification defines 
the  possible interactions between the  modules that use the  chan- 
nel  for  their interactions. Some examples of channel  definitions 
can be found in Appendix I. An example of the  stepwise  refine- 
ment of a module is shown in Fig. 1. 

These concepts, which  are  being used within  the  work of 
Subgroups B and C, can also be directly  applied  to  the OS1 
reference  model. In particular, the meaning of “service speclfica- 
tion” and “protocol speufication” has been defined more  pre- 
cisely in the  context of formal  descriptions.  Additional  objects 
for possible  descriptions  have been identified, such as interfaces, 
entity submodules,  etc. 

B. Current Status of Work 

The concepts outlined  above  have been successively  refined 
during the meetings  of  the Subgroup. Their definition, as given in 
the tutorial document, is relatively  stable. The application of 
these concepts to the  Reference  Model, as d e s c r i i  in the 
tutorial document, has been one of the first items of  work  of the 
Subgroup,  and has led to the  present  definitions. 

Work on the  interworking of the  Subgroup B and C languages 
has just started. Earlier  work on this topic has been difficult 
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Fig. 1. Example of step-wise refinement. (a) Module A .  0) Submodules A, and A ,  representing  the  substructure of A.  (c) Further  refinement of submodule A,. 

because of the  preliminary  nature  of  the status of the  Subgroup B 
and C languages. This topic  was  first  included in the  work 
program of Subgroup A only  during  the  April  1982  meeting of 
the ad hoc  group on FDT. 

C. Future Work 

Future work  of the group will mainly  consist of liaison  with 
groups  developing  complete FDTs (including  Subgroups B and 
C) for  checking  possible  differences in the interpretation of 
architectural concepts, and  eliminating  these  differences, if possi- 
ble. 

111. SUBGROUP B: EXTENDED FINITE-STATE 
MACHINE SPECIFICATION 

A .  The Model 

The  underlying  model for the  technique is an extended  finite- 
state automaton.  The state space of a  module is determined  by  a 
set of variables;  a state is determined by the  values  assumed  by 
each of these  variables.  One of these  variables is a  distinguished 
variable  called  the  “STATE”; it represents  what is traditionally 
thought of as the state of a  finite  automaton. It is sometimes 
called  the “major state”  to  distinguish it from  the  other  variables 
which  are  sometimes  called  “context  variables.”  The  STATE is 
often used to  encode  the status of the  connection, e.g.,  closed, 
opening,  etc.,  while  the  context  variables  are  often  used to store 
sequence  numbers,  grade of senice, data, and  the  like. 

Transitions  are  specified  from  a  major state (or  set of major 
states)  to  a  major  state. These transitions may depend on predi- 
cates on the  context  variables,  and  they  may  depend on an input. 
Associated  with  each  transition is an operation to be  executed as 
part of  the transition. It may  change  the  values of the  context 
variables,  and it may initiate output interactions  with  the en- 
vironment.  The  operation is assumed to be  atomic. 

Many  specifications may indeed  by  deterministic, but this is 
not a  requirement of the  specification  technique. Thus for  a given 
state and input interaction,  more  than  one  enabling  predicate 
may be true,  and  several  different  transitions  may  be  possible. A 

priority  may be assigned to transitions.  The  transitions of high 
priority will take  precedence  over those of lower  priority, but if 
two or  more  transitions of the same priority  are  enabled,  then 
exactly  one of these will be chosen,  nondeterministically, for 
execution. 

Spontaneous  transitions, i.e.,  those that do  not depend on any 
input (and  hence  have no “when”  clause), may include  a  delay 
clause  with two parameters, dl and d, .  The  transitions may not 
occur until the  enabllng  condition  has  remained  true for d,  time, 
and  it must be considered  immediately if the  enabling  condition 
remains  true  continuously  for d ,  time. If the  delay  clause is 
absent,  a  delay  condition of dl = 0 and d ,  = infinity is assumed. 
This means that the  transition  may  occur  at  any  time  the  en- 
abling  condition is true, but possibly  with  infinite  delay  (i.e., 
never). A spontaneous transition  marked NO DELAY  must  be 
considered  immediately  whenever its enabling  condition  is  true. 

B. The Language 

To spec@ transitions  and  the  operations  associated  with  them, 
a  language that is based mainly on PASCAL, which is now an 
IS0 Draft  Standard (IS0 DIS7185),  was  developed.  Some  addi- 
tions  to PASCAL  were found necessary. 

A specification  comprises three major parts: the  channel type 
definitions,  the  module  definitions,  and  the  system  structure. 

The  channel type definitions  serve to name  the two players of 
the  channel  and  define  what  the  interactions of the channel  are 
and which  player can initiate them.  The  channel type definitions 
describe  the  potential  connectors between the  various  modules. 

The  module  definitions specify the  actual  transitions  and  their 
operations.  Each  transition  may be listed  separately,  giving  the 
state(s)  in  which it may  be  applied,  the  resultant state, the input, 
and  other  conditions on context  variables  that  enable  the  transi- 
tion  and  the  priority of the  transition.  These  various  parts of the 
transition  are  all  optional.  Furthermore,  transitions may  be 
nested;  thus for example, all transitions that apply  from  the state 
SI may  be  grouped  together  without  repeating  the “from S,” 
portion of the  transitions. 

The  system structure portion of the specification is intended  to 
describe  the instantiation of various  modules,  combined to make 
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asystem;itssyntaxandsemanticsremaintobedefined.Thisis 
an area that requires coordiaation between subgroup B and 
Subgroup A. 

C. S t a m  of the Work 

The first  four  sections of the tutorial document are substan- 
tially  complete. Work on the  formal  semantics of the model is 
progressing  smoothly, and Section 5 is now  nearly  complete. In 
addition, major examples of the technique and application of the 
technique to draft staudards already  exist or are in preparation; 
these  are to be included in Annex 2 of the tutorial. 

At  present, there are no language support tools, but some that 
exist  for  related FDTs couM presumably be adapted to this 
technique. 

Iv. SUBGROUP c: TE”0RAL. ORDERING 
SPECIFICATION 

A.  Model for Temporal Orden’ng Specijkation 

The  approach of Subgroup  C is based on the concept of 
Temporal  Ordering of Interaction  Primitives which is char- 
acterized  by  defining  the  behavior of a  subject of specification  by 
describing and ordering  only  the  interactions  with its environ- 
ment as they can be observed  from  outside (the “black-box” 
concept). This concept has the  inherent  advantage of refraining 
from  any  statement  that is in the realm of the  implementor. 

The basis of the  technique is to specrfy all  possible  sequences 
of information inputs and outputs that  are  observable at the 
boundary  (i.e.,  the access points or channels) of the  subject of 
+cation  (called part or module). For a service specification, 
for  example, this would  mean  all  possible  sequences of  service 
primitives. 

The  technique  allows  the  addition of specification statements 
such as statements  concerning  the  dependencies of values of 
information outputs on values of information inputs, and state- 
ments concerning the time dependencies between inputs and 
outputs (which  are necessary to  express  performance  characteris- 
tics  such as transfer  delay,  throughput, and the  like). 

One of the  crucial aspects that  any  formal speufication lan- 
guage  has to ded with is the  level of abstraction in which the 
inputs and outputs of the subject of specification should be 
described.  Corresponding to the  approach  adopted  in OSI, Sub- 
group C initially has chosen a so-called Interaction  Primitive (IP), 
which, at the service level, is substituted  for  a Service Primitive, 
and at the  protocol  level is substituted  for  a  Protocol Data Unit. 
The Interaction  Primitive is assumed to be a common activity that 
the  subject of specification shares with its environment. These 
common activities  take  place at (service- or protocol- ) access 
points. Dunng this common activity  information is established 
and exchanged. 

A set of “temporal ordering“  operators is introduced which 
serve  to  place IPS in any  desired  temporal  relationship. Thus 
Protocol Data  Units and Service primitives are temporally  ordered 
to get “higher order”  compositions  which again may be ordered 
to ultimately  yield  the specification of a service or protocol. 

To allow  for  a  realistic  description of concurrency of inputs 
and outputs and an unambiguous  semantics  when  mapping  the 
+cation onto the  implementation, an IP is assumed  to  elapse 
in time, it is not  abstracted to an infinitesimally  small  (atomic) 
moment in time.  The  current  temporal  ordering  operators  and 
time  performance  predicates  are  based on these  characteristics. 
The  temporal  ordering  operators thus allow  for  such things as the 

sequential  and  parallel  ordering of IP’s as well as the possiiility 
of mutual  disruption of IP’s which can be used to express such 
aspects as collision problems in disconnect  phases. 

The model is independent of the choice of data types and 
operations on data types. To promote coherence within the FDT 
group, Subgroup C will use Pascal for these aspects of the 
language. 

B. Statw of the  FDT 

The  first  framework of the language  was  available at the FDT 
Washington meeting (October 1981) in document WASH-7. The 
technique has shown promising results. Although  improvements 
to the  language  elements are possible and necessary, trial speafi- 
cations  have shown that rather complex  specifications indeed can 
be kept concise. The eariy draft of the tutorial  document  reflects 
the status as of  mid-1982. It contains the first  four chapters and 
an annex  which contains a  fairly  complete  description of the 
transport service, demonstrating  the use of the  language. More 
trial  specifications are available and in preparation. 

C. Current Work 

since the drafting of the  early  workmg  documents,  Subgroup  C 
has  paid  considerable attention to the  formal  semantics of the 
model  and  language  elements  (Chapters 5-7). The  formal 
semantics  must  provide  the  mathematical  basis of the language, 
which is necessary for  the  development of a speufication “meta- 
theory”  which contains proof rulcs for  such things as proving that 
a service is rendered  by  a  protocol  (plus  lower  level service) and 
proving  that  an  implementation  complies  with  a  +cation. 
This compliance  aspect is extremely  important  and  leads to such 
considerations as balancing  the  model  and  language  concepts 
between conciseness, which is necessary to keep  a  specification 
surveyable  and  perspicuous,  and  precision,  which is necessary  to 
avoid  overspecrfication.  Thus  the  work on formal  semantics  pre- 
eminently  provides  criteria for judging  whether or not  the  formal 
model  and  associated  language  elements can precisely  and  satis- 
factorily specify OS1 protocols  and services. 

This work  has  provided  evidence  that,  for  example,  the  repre- 
sentation of a SeMce Primitive  by  a angle IP, i.e.,  without giving 
the Service Primitive  an  inner  temporal  ordering  structure,  does 
not always  produce an adequate  speufication.  Expenence  with 
the  description of data primitives,  flow  control,  segmenting,  the 
precise  moment of disconnection,  and  other  problems has shown 
that at least some of the Service Primitives  have to be decom- 
posed into more  elementary  units of information inputs and 
outputs that  have  a  (partial)  temporal  order. 

For this elementary  unit of information input and output, 
Subgroup C has  adopted  the  term  “event,” which can be consid- 
ered as a  simple  interaction  primitive.  The  event  concept  allows 
more  powerful (but when necessary also extremely  simple) con- 
structions for such things as Service Primitives:  a  process of any 
complexity,  rather than just a  simple input or  output of a 
message, can be used to  model  a Service Primitive. 

For a  more  detailed discussion of the use of the  event  concept 
the  reader is referred to the  most  recent  description of the  model 
in the  tutorial  document. 

Using  the  same  set of temporal  ordering  operators it is possible 
to construct Service Primitives  and  Protocol Data Units  from 
events,  and again order  these to get  “higher  order”  compositions 
which will ultimately  yield  the  +cation of a senice or 
protocol. Within this framework,  Subgroup  C  is  now  studying  the 
characteristics  and  potential  refinements of the  formal  semantics 
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of the  temporal operators in order to express  their  semantical 
properties in terms of well-defined  mathematical  properties.  Sub- 
group C considers  the  availability of a  mathematical  theory of the 
ordering operators of extreme  importance  for  a  successful treat- 
ment of the  difficult  problems of compliance.  Subgroup C ex- 
pects that the  outcome of this study may  affect (the notation of) 
some  language  constructs.  Moreover, it expects that after comple- 
tion of this study,  the contents of Chapters 5-7 will quickly  be 
stabilized. 

APPENDIX I 
SUBGROUP B LANGUAGE: A SAMPLE SPECIFICATION 

The  following is an example of the  Subgroup B method of 
protocol  description in use taken  from  Section  3.6 of the  Sub- 
group B tutorial  document. It is a  specification of an alternating 
bit protocol.  Although  the  example shows  many  of  the basic 
constructs of the  language,  simplicity dictates that some of the 
features of the  language not be shown here. It is hoped that the 
example will serve as enough of an introduction to the  technique 
to make its form clear to all readers  and to interest  experts in 
studying  the full Subgroup B tutorial. 

The first section of the  example contains some declarations of 
constants and types, in a  style  familiar to a  reader of Pascal.  One 
obvious addition is the notation “. . . ” which  is  used to indicate 
that the specifier is leaving  the interpretation to  the  implementor. 
Often this is accompanied  by  a  comment to guide  the  implemen- 
tor in his  choice. 

A notation was  needed to indicate the  properties of the  con- 
nections between modules.  These  are  called  “channels.”  Each 
channel  may have  players,  the  roles of  which are  indicated in 
parentheses after the  channel  name.  The  various  interface  events 
of a  channel  are  indicated after the  role  list. For each  role,  the 
events  that  the  player  may initiate are  listed  along  with  their 
parameters. These parameters  are  available  within^ a transition 
that is  initiated by  the  event. 

The  module  header  line  includes  names  for  the  channels it uses 
as well as an  indication of the  role  the  module  plays on that 
channel.  Thus  the  Alternating-Bit  module is  the  Provider of the 
U  channel, which is a Vaccess-point channel.  The inputs from 
this channel  and  from  the  N  channel  are  placed in a common 
queue.  The  U-access-point  channel supports three  kinds of inter- 
face  events.  Two of these  may  be  initiated  by  the  User (and are 
thus inputs to the Alternating-Bit module),  and  one of these  is 
initiated by  the  Provider (and is thus  an output of the  module). 

Following  the  module  header,  variables  local to the  module  are 
declared.  Although not used in the  example, if there were any 
labels or types local to the  module,  they  would  precede  the 
variables, as they do in Pascal.  Then  the  major states and  major 
state sets are  declared.  State sets are  a  convenient  way to specify 
that a  transition may take  place  from  any of several  major  states. 

Next  is  an  initialization  section. In this, the  major state and  the 
variables  are given initial values. This determines  the initial state 
of the  module. 

Then  functions and procedures  are  declared. In addition to the 
standard Pascal  definitions,  either  the keyword “primitive” or 
the notation “. . .” is used to indicate that the details  are left to 
the  implementor.  Often,  the choice  of a data structure and the 
details of the  primitives  must  be  coordinated  choices. In the 
example,  the  choice of the structure of “buffer-type” will de- 
termine  the  details of the  procedures “store,” “remove,”  and 
“retrieve.”  Furthermore,  the  actual  details of these  structures and 
the  routines  that  manipulate them are not particularly  relevant to 
the  action of  the protocol.  Output  from  a  module over a  channel 
is  specified  by  the  keyword OUT (or perhaps OUTPUT, the  choice 

of the keyword is still under study).  The actual channel and event 
are indicated  by naming the  channel, followed  by a “.”, followed 
by  the output interaction with its parameters. 

Finally,  the  transitions  are  listed.  The  clauses correspondmg to 
the  keywords  “from,” “to,” “when,” are all  optional, and may 
appear in any  order,  and may be nested  (though  they  are not in 
this example).  They  describe  the  major state before  the transition 
and after the transition and the  required input, respectively.  The 
“provided” clause  describes  an enabling predicate that must be 
satisfied  for  the  transition to take  place. An optional “priority” 
may be assigned to any  transition. 
Once the input is listed,  the  parameters  associated  with  the 

input may  be  accessed in much  the  same  manner as the  fields of a 
record  within  the  scope of a “with” statement. This enhances the 
readability of the  resultant  specification. 

Notice  the transition from state ESTAB back to itself  when an S. 
TIMERJeSpoIlX occurs. This corresponds to the case in which  the 
retransmit  timer  expires  for data that have  already  been  acknowl- 
edged. In this case, clearly  nothing need be done. 

The  specification of the  action of the  timer is included in the 
full Subgroup B tutorial document. 

const 
retran-time = 10; (*  retransmission time *) 
-PtY 
null 

= 0; ( *  ompty buffer *) 
= 0; ( *  place-holder for 

sequence in ack *) 

type 
data-type = . . .: 
seq-type = ... : (*  for alternating bit, 

id-type = (DATA, ACK); 

ndata-type = 
timer-type = (retransmit) : 

record 

use 0..1 *) 

id:  id-type; 
data:  data-type; 
seq:  seq-type; 

end: 

record 
=g-tyPe = 

msgdata:  data-type; 
mgseq : seq-type : 

end : 
buffer-type = . . .: 
int-type = ... ; (*  usually ‘integer’ *) 

( *  channel definitions *) 

channel U-access-point(User, Provider); 
by  User: 

SEND-request(UData:  data-type); 
RECEIVE-request; 

RECEIVE-response(UData:  data-type); 
by  Provider: 

channel S_access-point(User, Provider); 
by  User: 

Timer-request(Name:  timer-type: 
Time:int-type); 

by Provider: 
Timer-response  (Name:  timer-type) ; 

channel N-access-point(User, Provider); 
by  User: 

by  Provider: 
Data-request(NData:  ndata-type); 

Data-response(NData:  ndata-type); 

( *  Module definition *) 

module Alternating-Bit 
(U: U-access-point(Provider) common queue; 
N:  N-access-point (User) c-n queue: 
S: S_access-point(User) individual queue); 
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var 
send-seq:  seq-type; 
recv-seq:  seq-type; 
send-buffer:  buffer-type; 
rem-buffer: buffer-type; 
Plq:  =g-type : 

state: 

EITHER = [ACK-WAIT, ESTAB]; 
(ACK-WAIT, ESTAB); 

initialize 
begin 

state to ESTAE; 
send-seq := 0; 
recv-seq := 0; 
send-buffer := empty; 
recv-buffer := empty; 

end; 

predicate Ack-OK(NData:  ndata-type); 
begin 

Ack-OK := NData.id = ACK 
and  (NData.seq = send-seq) 

end ; 

procedure deliver-data(msg:  nsg-type); 
begin 

out U.RECEIVE-response  (msg.msgdata) 
end : 

procedure inc-recv-seq; 
begin 

end : 

procedure inc-send-seq; 
begin 

end : 

procedure remove(var buf:  buffer-type; 

primitive; 

recv-seq := (recv-seq + 1) mod 2 

send-seq := (send-seq + 1) mod 2 

msg: msg-type) ; 

function retrieve(buf: buffer-type):  msg-type; 
primitive: 

procedure send-ack (msg: msg-type) ; 

begin 
var a:  ndata-type; 

a.id := ACK; 
a.data := msg.msgdata; 

out N.DATA-request ( 6 )  

a.seq := null: 

end ; 

procedure send-data(msg:  msg-data); 
var 8 :  ndata-type; 
begin 

S.id := DATA; 
s.data := msg.msgdata; 
s.seq := 9g.msgseq; 
out N.DATA-request(s) 

end : 

procedure store(var buf:  buffer-type; 

primitive; 

( *  transitions *) 

trans 

begin 
from ESTAB to  Am-WAIT when  U.SEND-request 

msg: msg-type) ; 

p-msgdata := m t a ;  
p.msgseq := send-seq; 
store(send-buffer,p) : 
send-data(p) ; 

from ACK-WAIT to ACK-WAIT when S.TIPIER-response 
provided Name = retransmit 

begin 
p := retrieve(6end-buffer) ; 
send-data (p) ; 
out S.TIIIER-request(retransmit, retran-time) 

end ; 

from ACK-WAIT to ESTAB when N.DATA-response 

begin 
provided Ack-OK(NData) 

remve(send-buffer, NData.msg); 
incr-send-seq; 

end; 

from ESTAB to ESTAB when S.TImR-response 

begin 
provided Name = retransmit 

( *  do nothing: the message that caused 
this timer to be set has been 
acknowledged. * )  

end : 

from EITJiER to SAKE when N.DATA-response 

begin 
provided NData.id = DATA 

q.msgdata := --.data; 
q.msgseq := NData.seq; 
send-ack (q) ; 
if NData.seq = recv-seq then 

store(recv-buffer, 9); 
incr-recv-seq 

begin 

end 
end: 

from EITHER to SAHE when U.RECEIVE-request 

begin 
provided not buffer-empty(recv-buffer) 

q := retrieve(recv-buffer); 
deliver-data (9) : 
remove(recv-buffer, q) 

end ; 

APPENDIX I1 
SUBGROUP C LANGUAGE: A SAMPLE SPECIFICATION 

In this Appendix, we  give a formal specification of a simplified 
Transport Service.  The  example  reflects  the status of the  language 
as of mid-1982. We hope that the  semantics of some of the 
interactions and  interaction  parameters can be  understood  without 
a detailed elaboration. A specification of the Transport Service 
using  the  most  recent  language  definition is contained in the 
Subgroup C tutorial  document of August  1983 [SI. 

Briefly, the Transport service (TS)  provides transparent trans- 
fer of data between  Session  Entities (SE's), relieving  these  entities 
from any concern about how  the transfer is to be  achieved.  The 
service  provided  is  connection oriented; it is necessary to estab- 
lish, use, and terminate a two-point Transport Connection  (TC). 
The TS enables the SEs to  request  TC  parameters  and a class of 
service  quality  selected  from a predefined  set of classes.  The SEs 
may  choose to accept  or  refuse a request for connection. The 
established  TC  represents a two-way simultaneous data path 
between a pair of SEs. 
An SE can terminate th is TC  and inform the  correspondent SE 

of th is termination. If data are  undelivered at the time of the 
termination  request, it is not  guaranteed that they will be  delivered 
at all. If  the TS is unable to maintain  the  quality of  service agreed 
upon, it terminates  the TC and informs both session  entities. 

There  are two types of data that can  be transported by  the TC: 
Normal Data (ND) and Bpedited Data (ED). N-D  is of arbitrary 
size and ED is of limited  size. It is reqhed that the ED be 
delivered  at  least as fast as the ND. 

The  part TS describes  the service  defined  above.  Each  SE is 
charactzed by a distinct transport address  (here apl and  ap2). 
TA denotes  the  set of  these addresses.  Each access point  ap:TA. 

TS interacts with SEs by  means of interactions.  There arethe 
following interactions: 

- 
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COMectiOIl request  and GOMeCtiOn indication, 
knect ion  &eptance request and connection ~cceptar~ce 

indication (currently  called:  Connection  response  and 
Connection  confirmation), 

Disconnect  request  and  Disconnect indication, 
Formal  Data request and Normal Data indication, 
Bpedited  Qata request and Bpedited Data indication. 

In the  specification they are  represented  by  the  above  underlined 
letters. The direction of information exchange  follows  the  request 
and indication  conventions. 

In all  interactions,  the  first  pair of indices gives the  source and 
destination transport addresses. 

The  parameters in Ar and Ai whose range is the  set  CLASS 
gives  the  quality of the  service  provided  by  the  TC.  The v m  
such  a  parameter  denotes  a  tuple of values: (throughput ratel, 
- throughput rate 2, _average _transit delayl, g v e r e  pansit  delay& 
maximuin  connection  setup time).The numbers 1 and 2 i n  the 
above  parameters serveastinguish between  the  possible  values 
the  TC  can  have  in  different  directions.  The  parameters  with 
range  CAUSE  denote  the  reason why a  disconnect interaction 
takes  place;  the  parameter  p3  in Di denotes the originator of the 
disconnect.  The  parameters  with  range  NDATA or EDATA 
denote the data transmitted  during  the interactionND an= 

The  simple  TS  has  only  two  access  points, apl and ap2, and 
the  connection can be  set  up  only  from  access point apl (address- 
calling  session  entity) to access point ap2  (address-called  session 
entity). 

The defiition of the  temporal  ordering used in this example  is 
based on the  assumptions that the  primitive  activities to be 
ordered have no explicit inner temporal  structure and have finite, 
positive duration. Therefore,  only the  beginning and/or end of 
an  activity  may be temporally  related to a  beginning and/or end 
of another  activity. 

To order such activities we use two  techniques: 1) temporal 
ordering  primitives,  seq,  conc,  muterm,  and  select, which  specify 
a  regular  temporal ordering o f ,  an- guards  which 
enable  an  execution of a  phase or activity when certain  condi- 
tions  are  satisfied  and  in this way  allow irregular  temporal 
orderings. An additional restriction on the  temporal  ordering in 
which  activities  may  be  executed  may  be  imposed  by  the  parame- 
ter value dependence. 

The  following defiitions of  the temporal  ordering  constructs 
apply when  these  constructs  are  enabled  and not disabled.  The 
activities a1 through a,, and b, through b, denote  phases.  A 
phase  can  be  an  interaction or a  temporal  construct of interac- 
tions. 

ol, CI z, . . . , a, are  temporally ordered75 that a  phase a, + begim 

- 

- seq ( Q ~ ,  C I ~ ,  a 3 , .  . . , a,). Here, seq  specifies  that phases 

part simple transport  service(access  points  apl,ap2) 

at a d  - .  
disruptible  interactions 
NDr(data:=), 
NDi (data:=), 
E D r ( d a t a : G ) ,  
E D i ( d a t a : g ) ,  

mi-}, called: (ap21, class:=), 
mu  disru  t ible   interactions 

A i ( c l a s s : g ) ,  

Dr(reason:CAUSE), 
D i ( ( o r i g i n z o n ) :  {(pZ,p3)ipZ="user' & p3:CAUSE 

- or pZ='provider~3="undef ined-)}  

some  time after the  phase ai has terminated. seq has not  begun 
when a,  has not begun.  seq  terminates  when aperminates. 

conc ( a l ,  a 2 ,  a 3 ,  ... , a,). Here, conc specifies that phases 
U ~ Z U ~ ,  , a ,  are  temporally uiiiiited so that each  may 
begin  and  hence  terminate  independently of each  other. conc has 
not begun  when  none of the ai has begun, and is terminatxwhen 
all ai have terminated. Note that in the  example,  the  temporal 
independency of the  phases in the  conc construct is sometimes 
restricted by a value  reference, as explained  hereafter and shown 
in the  example. 

select ( a l ,  a , ,   a3 ,  * , a, )  speclfies that any one but only  one 
of the  phases a,, a,, a3,  * * * ,  a ,  may  begin.  The begmning of a 
phase  excludes  the  execution of other phases.  select  has  begun 
when one of the  phases ai has begun  and terminarwhen that ai 
has terminated. 

muterm ( a l ,  a,, a 3 , .  . * ,  a, )  specifies  a  phase  composed  from 
phases a,, a, ,  . * . , a ,  ordered in such  a way that all a's are 
allowed to start independently  provided no other a has terminated. 
When  an a, terminates,  the start of those a's that are not yet 
started is prohibited,  those a's that are  active and can be  dis- 
rupted are  disrupted,  and  those a's that are  active and cannot be 
disrupted terminate  independently.  muterm  terminates when  each 
of its constituting ai is  either  prohibited to begin,  disrupted, or 
terminated.  muterm can be  considered to be a weak form of select. 

The  value of function  b-time  ((activity  reference)), use- 
guards,  depends on the  moment of the  function  evaluation. If at 
this moment  the  concerned  activity  has  begun,  b-time  ((activity 
reference)) = begin  time of the referred activity.  Otherwise it is 
undefined.  e-time  ((activity  reference)) is analogous to b-time, 
only it delivers  the  termination  time of the  referred  activity. 

A particular value  a  parameter (or an  n-tuple of parameters) 
can have during an interaction may  be  a  value (n-tuple of values) 
that another parameter (n-tuple of parameters) has obtained 
during some other interaction. The  value  function,  used in a 
reference to a particular interaction, isperformed only  when  the 
parameters of  the referred interaction are established, in other 
words  when  the  referred  interaction at least  partially took  place. 
In this way an  implicit  restriction  is  imposed on the  temporal 
ordering of the  interaction which uses the  value  reference. 

We can associate  with  a  phase or an  ordering  primitive  a 
timing  specification " ( t , ,   t , ,  t3),'' where 0 Q t ,  Q t ,  < t ,  and t ,  
denotes  the lower bound, t3  the  upper bound, and t2  the  average 
value  in  some  time units that a  phase or a  temporal  ordering 
primitive  might  take. For example, if in an interaction, data are 
exchanged  between  entities,  the t , ,   t , ,  and t3 in the notation 
a ( t l ,   t , ,   t 3 )  are  measures of the throughput. 

In the  following  formal  description of the  simple TS we added 
comments  hoping  that  they  make  the  specification  self-contained. 
These  comments start with  a " %" character. 

- 

- 

- 

X interactions  at  access  point apl of ca l l ing   sess ion 
X entity 
X Normal Data request  interaction 
X Normal Data indication  interaction 
X Expedited  Data  request  interaction 
X Expedited  Data indication  interaction 

X Connection  request  interaction 
X Acceptance indication  interaction 

X Disconnect  request  interaction 
X Disconnect  indication  interaction 
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- a t  ap2 
d is rupt ib le   in te rac t ions  
NDr (dat a:=), 
NDi (data:=), 
E D r ( d a t a : e ) ,  
E D i ( d a t a : g ) ,  

non d is rupt ib le   in te rac t ions  
Ci(calling:{apl},  called:{ap2),  class:=), 
Ar(class:=), 

- 

X interactions  at   access  point ap2 of cal led  session 
X en t i ty  
X Normal Data  request  interaction 
X Normal Data ind ica t ion   in te rac t ion  
X Expedited  Data  request  interaction 
X Expedited  Data  indication  interaction 

X Connection  indication  interaction 
X Acceptance  request  interaction 

D ~ ( r e a s o n : e ) ,  X Disconnect  request  interaction 
Di((origin,reason):  {(p2,p3)lp2="user' & p3:CAUSE 

or p 2 = " p r o v l d e r ~ 3 = ' u n d e f i n e d " ) ~  
X Disconnect  Indication  interaction 

- 

X data  parameter denotes normal or  expedited  data  transmitted  during  an  interaction 
x class  parameters  denote  the  performance  parmeters 
X reason  parameter  decribes why a user - in i t ia ted  Disconnect  request  took  place 
X origin  parameter, which has  values  'provider" or -user",  denotes  the  originator of a Disconnect i rd i ca t ion  

define X 

CLASS <=(thrpl,thrp2.avtrdell,avtrdel2,maxconsetup) X 
x 
x 

MAX-CON-SETUP <= e ( m a x c o n s e t u p , C r  at apl ) ,  
AVERAGE1 <= e ( a v t r d l 1 , A r  ap2), 
THROUGHPUT1 <- e ( t h r p 1 , A r  5 ap2). 
AVERAGE2 <= e ( a v t r d l 2 , A r  ap2). 
TBROUGEPUT2 <= e ( t h r p 2 , A r  at ap2) 

EDATA-FASTER-TMN-NDATA 

<= & j : ( (b - t ine ( ( j )GEDr  at from) 
< b- t ime(( i )G NDK at from) 

) 

AVERAGE-DELAY(k,avtrdelay) 
<- (SUM( j: 1. .k-1): 

( b - t i m e ( ( j ) e  NDi at t o )  - b-time((  j)$ NDr at from) 
7 
+time - b- t ime((k)e  NDr at from) 

)/k < avtrdelay 

TRANSPORT(from,to,thrp,avtrdel)<- 

=( [i:pos i n t ]  
vhen EDATA FASTER THAN NDATA & - 

AVERAE DELAy(i,a%rdel) 
- do NDi(eT( i )g  NDr at from) to ) ,  

end define 

x 
X 

x 
x 

define means the  beginning of a s e t  of abbreviations 

<= means 'is abbreviated by' 
CLASS i s  the  name of an abbreviation; do not  confuse 
CLASS v i t h   t h e   s e t  g, which i s  l e f t  undefined 

maximum connection  setup  delay  value 
average  t ransi t   delay  in  one d i rec t ion  
target  throughput  in one d i rec t ion  
average  t ransi t   delay  in   opposi te   direct ion 
target  throughput  in  opposite  direction 

All those EDK that  vere  accepted  before  i-th NDr must 
be delivered  before  i-th NDi 

x 
x 

Interact ions  a t   apl :  
C r ,  AI 

In t e rac t ions   a t  ap2: 

x NDr, NDi NDK, mi 
x EDK, EDi EDr ,  EDi 

Cf, A r  

x Sirple  Transport  Service 

X the sum of k t ransi t   delays  for  a normal data   uni t  
X to   c ross   the   se rv ice  part, divided by k nust be 
X smaller  than  the  average  delay 

X abbreviation of normal and expedited  data  transport 
x i n  one d i rec t ion  

X Normal Data in te rac t ions  happen In  sequence 
X Expedited  Data  request  inter. also happen i n  sequence 
X thrp  here  as a measure of the  throughput 

X Norm. Data ind ica t ion  happen i n   t h e  same sequence as  
X Norm. Data  request  but  not  faster  than Exp.Data ind. 
x and satisfying  the  average  delay  requirement 
% Implicit  temp. order ing  res t r ic t ion On E by 
X parameter  value  reference,  using e 
X use of guard 
X Expedited  Data  ind's  happen i n   t h e  same sequence a8 
X Exp. Data requests and with  the same values. 

X end of abbreviations  section 
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rmt em 
(seq(vhen  t ime < MAX-CON-SETUP + b-time(Cr g a p l )  
- do A i ( e ( A r  g ap2)), 

TRANSPORT(apl,ap2,THROUGEIPUTl,AVERAGEl), 
), 

select ( 
Dr(reasonl) ,  
Di(”user”,value(Dr at apz)), 
Di( “ p r o v i d c u n d e K n e d ” )  

1 
)s 

1, 

select( 
1 .  

D r ( r e a s o d ) ,  
D i ( “ u s e r ’ , e ( D r  g apl ) ,  
Di(”provider”,   “undefined”),  

1 

1 
end p a r t  

X Concur ren t   ac t iv i t i e s   a t   ap l  and  ap2 are taking  place.  
X S p e c i f i c a t i o n   o f   a c t i v i t i e s   a t   a c c e s s   p o i n t  apl: 
X F i r s t   i n t e r a c t i o n   t h a t  is  a l loved   t o   t ake   p l ace  is 
X Connect ion  request   in teract ion.   For   this   very  s imple 
% TS i t  must ho ld   t ha t   sou rceap l  and destination-ap2 

X Performance  specification  of  connection set up param. 
X I n t e r a c t i o n  A i  can   t ake   p l ace   a f t e r  A r  took  place, 
X an  example  of  temporal  ordering  restriction by value 

X Connection use phase. See def ine   sec t ion .  
X dependence 

% t h e  select al lows  one  of   the  fol loving  interact ions:  
X 1 o c a E  (a t   ap l )   i n i t i a t ed   D i sc .  req 
X remote user (a t   ap2)   in i t ia ted   Disc .  ind 
X p r o v i d e r   i n i t i a t e d  Disc. ind. 
% se lec t   t e rmina tes   vhen  one Disc.  has  taken  place. 
X Terminat ion   of   se lec t   d i s rupts   o f  A i  and 
% TRANSPORT, which t e r d n a t e s  mterm 
X 
X The a c t i v i t i e s   a t  ap2 a r e   s i m i l a r   t o   a c t i v i t i e s   a t   a p l  
X Value  ref .   implies   that  C i  c an   t ake   p l ace   a f t e r  Cr 
X took  place,   the  parameter  values of C i  a r e  t he   va lues  
X of  parameters  of C r .  
X Rest i s  s i m i l a r   t o   a c t i v i t i e s   a t   a p l  
X In t h i s   e x a a p l e  no negot ia t ion  of   Qual i ty   of   Service 
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