
13% PROCEEDINGS OF THE IEEE, VOL. 7 l , NO. 12, DEx3EMpEII 1963

Formd W p t i o n Techniques

I. INTRODUCTION

A. OSI Background and Framework

E ARLY IN the development of OSI, it was recognized that
if goals of OS1 were to be accomplished, formal descrip-
tion techniques (FDTs) would be required to ensure that

implementors anywhere in the world can develop correct and
compatible implementations.
As eminently described by John Day, the first Rapporteur on

FDT, in hex E of an early version of the Reference Model for
Open Systems Interconnection (SC16/N227), FDTs are neces-
sary to provide:

an unambiguous, clear, and concise specification of a service,

a basis for determining the completeness of the specification;
a foundation for the analysis of the speafication as to its

a basis for the uetification that the specification meets all of the

a basis for determining the conformance of implementations to

a basis for determining the comisteng of OS1 standards with

a basis for developing implementation support.

Many of these goals are crucial to the development of compati-
ble implementations. If formal techniques are not available, the
usefulness of OS1 standards will be greatly reduced.

The issues involved with FDT are rather abstract in nature and
not intended to produce the contents of the technical speafica-
tion of the Reference Model or the protocols and services for
each layer. This was the reason Working Group 1 (WG1) formed
a separate group on FDT.

The first meeting of the FDT group was in Chicago, IL, in

protocol, interface, or the Reference Model;

correctness, efficiency, etc.;

requirements of the OSI;

the OS1 standard specification;

each other;

Manuscript received January 15, 1983; revised September 25, 1983.
C. A. Vissers is with the Twente University of Tshnology, Dept. Infor-

matics, 7500 AE Enschede, The Netherlands.
R L. Tenney is with the Department of Mathematical Sciences, University

of Massachusetts, Boston, MA 02125.
G. V. Bochmann is with Dipartement d’hformatique et de Recherche

Op&ationelle (IRO), Universite de Montkl, Montrkal, P.Q., Canada H3C
3J7.

January 1980. Since then meetings have taken place in Amster-
dam, The Netherlands, in June 1980; Berlin, Germany, in
February 1981; Washqton, D C , in October 1981; Enschede,
The Netherlands, in April 1982; Catania, Italy, in November
1982; and Paris, France, in February 1983. Minutes, Rec-
ommendations, and other relevant working documents have been
distributed as regular SC16 documents.

This paper gives an overview of the work on FDTs for OS1
specifications as carried out by the I S 0 TC97/Sc16/WGl-ad
hoc group on Formal Description Techniques as of December
1982. A companion article in this issue, by G. Dickson and P. de
Chazal, gives an overview of corresponding activities by the
CCITT.

B. Early Work

The FDT group quite rapidly observed that the Reference
Model and associated protocols and services presented a major
challenge for formal specification and concluded that the group
could not simply adapt an existing technique to fit OS1 require-
ments. In order to provide immediate support for the technical
woriung groups while formal methods were bemg developed, the
group began by drafting guidelines for the informal speafication
of protocols and services. These guidelines served two purposes:
on one hand as an aid to the technical w o w groups to
promote structure, consistency, and completeness, and on the
other hand to achieve homogeneously structured specifications
among different layers which would be much easier to specify
formally once adequate formal techniques were available.

Although the informal guidelines absorbed most of the first
two meetings, the group also produced a work plan, a set of
criteria for evaluation of an FDT, and a first categorization of
different FDTs.

C. Forming of Subgroups

One of the difficult problems confronting the FDT group was
to converge the many divergent views on what FDT concept.@)
should form the basis for OS1 application, in particular in the
light of the likely possibility that a certain concept may be
appropriate for one layer but inadequate for other layers. The
FDT group has solved this problem by forming Subgroups around
corresponding FDT concepts and charging each Subgroup to
come up with one proposal, in much the same way that a
technical working group converges to a common solution. The
FDT group expects that different FDTs are likely to be used
together, complementing each other, rather than competing with
each other. Moreover, the FDT group assumes that growing
insight may raise the need for even newer techniques and Sub-
groups, whose results may stepwise replace techniques now under
development.

0018-9219/83/1200-1356$01.00 81983 IEEE

VISSERS a d: FORMAL DEscRIpnON TECHNIQUES 1357

The three Subgroups thus formed during the Berlin (February
1981) meeting are!:

1) Subgroup A (chaired by Gregor V. BochmaM), dealing with
architectural speufication concepts which (may) serve as the
architectural basis for the description languages developed by
Subgroups B and C.

2) Subgroup B (chaired by Richard L. T e ~ e y) , dealing with
the development of an FDT based on the Extended Finite State
Machine concept.

3) Subgroup C (c h a i r e d by Chris A. Vissers), dealing with the
development of an FDT based on the Temporal Ordering of
Interaction primitives.

Liaison is maintained with appropriate groups (VII/Q27,
VII/Q39, XI/3-1) within the CCITT. This applies in particular
to Subgroup B, as its FDT exbibits features similar to the SDL
technique developed by the CCITT.

A more detailed s u m m a r y of each Subgroup’s activity follows
this introduction. For a detailed insight in the technical concepts
the reader is referred to the tutorial documents of the Subgroups.

D. Tutorial Docwnmts

In order to work in a coherent way, the Subgroups have agreed
to produce, for each FDT, a so-called “tutorial” document, each
of which follows the same outline. In addition, s;bgroup A has
the charge of promoting the use of identical architectural con-
cepts by each Subgroup, in so f a r as this is possl%le. ?he tutorial
documents should be self-contained and provide sufficient
material for an OS1 expert to learn, appreciate, and apply the
FDT. The outline of the tutorial documents is as follows:

1) Introduction. This chapter introduces the main concepts,
purpose, and philosophy u n d e r l a the FDT.

2) M d l . This chapter provides the fmdamental basis of the
language in an informal, i.e., intuitive, way and provides the
platform for the other chapters.

3) Language Elemmts. This chapter gives the FDT language by
giving the notation and the informal semantics of the language
elements. It illustrates the use of the language with small exam-
ples. In addition, short guidelines for the implementor as well as
for the speafier are given.

4) Formal Syntax. The syntax s u m m a r y of Chapter 3.
5) Formal Semanticr. The formal semantics provides the formal

and mathematical basis for the FDT and the ultimate arbitration
for interpreting the language elements. It provides rules of
mathematical manipulation that are used in Chapters 6 and 7.

6) Integration Rules. This chapter provides proof rules (verifica-
tion rules) for c h e c k that an (N)-service is rendered by an
(N - 1)-senice and an (N)-protocol.

7) Confornu’.ty Rules. This chapter provides the proof rules for
checlung that an implementation complies with a specification.

8) Terminology.
Annex 1: User Guiaklines. These guidelines give detailed hints

to the implementor to interpret specific language constructs in
the light of simplifying implementations, etc. In the same way
hints may be given to the speufier to represent frequently used
technical constructs.

Annex 2: Applications to Draft St&&. The FDT group has
agreed to provide at least some trial speufications of Transport
Layer standards to demonstrate the use of the FDT in complex

Annex 3: Language Support Took. In the long term, an FDT
may be supported by automated tools for designin& manipulat-
ing, and assessing specifications and implementations.

SpeclfiC2ltiOns.

Annex 4: Check Against Ernhation Criteria. This Annex is
used to assess the FDT against the set of evaluation criteria

Annex 5: Relation to Altermatice M d l s . This Armex is used to
indicate differeoces, comespond-, and/or compatibility be-
tween different FDT”s, and may provide translation rules.

other Annexes if necessary.

E. Statw

The Subgroups have produced elaborate tutorial documents,
and the proposed FDTs are in a state in which trial speufica-
tions can be p r o d u d In addition, the group themselves have
produced and are preparing major examples and applications to
draft standards, particularly at Transport level, to demonstrate
the features and applicability of the techniques. Some crucial
aspects such as the proving that an implementation complies with
a speufication have not been addressed in full, and work on these
issues is continuing.

The following sections briefly introduce the main concepts of
each technique. The reader is referred to the most recent tutorial
documents for a detailed insight.

11. SUBGROUP A: ARCHITECTUIUL CONCEPTS

A . Objectives and Main Features of FDT Developed

The objectives of the work in Subgroup A are twofold: 1) the
development of architectural specification concepts which may
serve as a basis for the description languages developed by
Subgroups B and C, and 2) the coordination of the developments
in Subgroups B and C in order to make it possible that subsystem
specifications give-n in the languages of Subgroups B and C can
be combined into a mgle system speafication in a meamgfd
way. The latter is called in the following “interworking between
Subgroup B and C languages.”

The main specrfication concepts defined by Subgroup A are
“modules” and “channels.” A module is a unit of specification.
Its behavior may be defined using the languages of Subgroup B
or C, or it may be defined in terms of a “refinement,” that is a
structure of interconnected submodules. Each submodule, in turn,
must be speafied. Modules (and/or submodules) interact with
each other through channels. The channel specification defines
the possible interactions between the modules that use the chan-
nel for their interactions. Some examples of channel definitions
can be found in Appendix I. An example of the stepwise refine-
ment of a module is shown in Fig. 1.

These concepts, which are being used within the work of
Subgroups B and C, can also be directly applied to the OS1
reference model. In particular, the meaning of “service speclfica-
tion” and “protocol speufication” has been defined more pre-
cisely in the context of formal descriptions. Additional objects
for possible descriptions have been identified, such as interfaces,
entity submodules, etc.

B. Current Status of Work

The concepts outlined above have been successively refined
during the meetings of the Subgroup. Their definition, as given in
the tutorial document, is relatively stable. The application of
these concepts to the Reference Model, as d e s c r i i in the
tutorial document, has been one of the first items of work of the
Subgroup, and has led to the present definitions.

Work on the interworking of the Subgroup B and C languages
has just started. Earlier work on this topic has been difficult

1358 PROCEEDINGS OF THE VOL. 71, NO. 12, DECEMBER 1983

A I X

2 v -
I I

A2 W

V

I

: i s Ai! ” ’

Fig. 1. Example of step-wise refinement. (a) Module A . 0) Submodules A, and A , representing the substructure of A. (c) Further refinement of submodule A,.

because of the preliminary nature of the status of the Subgroup B
and C languages. This topic was first included in the work
program of Subgroup A only during the April 1982 meeting of
the ad hoc group on FDT.

C. Future Work

Future work of the group will mainly consist of liaison with
groups developing complete FDTs (including Subgroups B and
C) for checking possible differences in the interpretation of
architectural concepts, and eliminating these differences, if possi-
ble.

111. SUBGROUP B: EXTENDED FINITE-STATE
MACHINE SPECIFICATION

A . The Model

The underlying model for the technique is an extended finite-
state automaton. The state space of a module is determined by a
set of variables; a state is determined by the values assumed by
each of these variables. One of these variables is a distinguished
variable called the “STATE”; it represents what is traditionally
thought of as the state of a finite automaton. It is sometimes
called the “major state” to distinguish it from the other variables
which are sometimes called “context variables.” The STATE is
often used to encode the status of the connection, e.g., closed,
opening, etc., while the context variables are often used to store
sequence numbers, grade of senice, data, and the like.

Transitions are specified from a major state (or set of major
states) to a major state. These transitions may depend on predi-
cates on the context variables, and they may depend on an input.
Associated with each transition is an operation to be executed as
part of the transition. It may change the values of the context
variables, and it may initiate output interactions with the en-
vironment. The operation is assumed to be atomic.

Many specifications may indeed by deterministic, but this is
not a requirement of the specification technique. Thus for a given
state and input interaction, more than one enabling predicate
may be true, and several different transitions may be possible. A

priority may be assigned to transitions. The transitions of high
priority will take precedence over those of lower priority, but if
two or more transitions of the same priority are enabled, then
exactly one of these will be chosen, nondeterministically, for
execution.

Spontaneous transitions, i.e., those that do not depend on any
input (and hence have no “when” clause), may include a delay
clause with two parameters, dl and d, . The transitions may not
occur until the enabllng condition has remained true for d, time,
and it must be considered immediately if the enabling condition
remains true continuously for d , time. If the delay clause is
absent, a delay condition of dl = 0 and d , = infinity is assumed.
This means that the transition may occur at any time the en-
abling condition is true, but possibly with infinite delay (i.e.,
never). A spontaneous transition marked NO DELAY must be
considered immediately whenever its enabling condition is true.

B. The Language

To spec@ transitions and the operations associated with them,
a language that is based mainly on PASCAL, which is now an
IS0 Draft Standard (IS0 DIS7185), was developed. Some addi-
tions to PASCAL were found necessary.

A specification comprises three major parts: the channel type
definitions, the module definitions, and the system structure.

The channel type definitions serve to name the two players of
the channel and define what the interactions of the channel are
and which player can initiate them. The channel type definitions
describe the potential connectors between the various modules.

The module definitions specify the actual transitions and their
operations. Each transition may be listed separately, giving the
state(s) in which it may be applied, the resultant state, the input,
and other conditions on context variables that enable the transi-
tion and the priority of the transition. These various parts of the
transition are all optional. Furthermore, transitions may be
nested; thus for example, all transitions that apply from the state
SI may be grouped together without repeating the “from S,”
portion of the transitions.

The system structure portion of the specification is intended to
describe the instantiation of various modules, combined to make

VISSERS e? aL: FORMAL DESCRIPTlON TECHNIQUES 1359

asystem;itssyntaxandsemanticsremaintobedefined.Thisis
an area that requires coordiaation between subgroup B and
Subgroup A.

C. S t a m of the Work

The first four sections of the tutorial document are substan-
tially complete. Work on the formal semantics of the model is
progressing smoothly, and Section 5 is now nearly complete. In
addition, major examples of the technique and application of the
technique to draft staudards already exist or are in preparation;
these are to be included in Annex 2 of the tutorial.

At present, there are no language support tools, but some that
exist for related FDTs couM presumably be adapted to this
technique.

Iv. SUBGROUP c: TE”0RAL. ORDERING
SPECIFICATION

A. Model for Temporal Orden’ng Specijkation

The approach of Subgroup C is based on the concept of
Temporal Ordering of Interaction Primitives which is char-
acterized by defining the behavior of a subject of specification by
describing and ordering only the interactions with its environ-
ment as they can be observed from outside (the “black-box”
concept). This concept has the inherent advantage of refraining
from any statement that is in the realm of the implementor.

The basis of the technique is to specrfy all possible sequences
of information inputs and outputs that are observable at the
boundary (i.e., the access points or channels) of the subject of
+cation (called part or module). For a service specification,
for example, this would mean all possible sequences of service
primitives.

The technique allows the addition of specification statements
such as statements concerning the dependencies of values of
information outputs on values of information inputs, and state-
ments concerning the time dependencies between inputs and
outputs (which are necessary to express performance characteris-
tics such as transfer delay, throughput, and the like).

One of the crucial aspects that any formal speufication lan-
guage has to ded with is the level of abstraction in which the
inputs and outputs of the subject of specification should be
described. Corresponding to the approach adopted in OSI, Sub-
group C initially has chosen a so-called Interaction Primitive (IP),
which, at the service level, is substituted for a Service Primitive,
and at the protocol level is substituted for a Protocol Data Unit.
The Interaction Primitive is assumed to be a common activity that
the subject of specification shares with its environment. These
common activities take place at (service- or protocol-) access
points. Dunng this common activity information is established
and exchanged.

A set of “temporal ordering“ operators is introduced which
serve to place IPS in any desired temporal relationship. Thus
Protocol Data Units and Service primitives are temporally ordered
to get “higher order” compositions which again may be ordered
to ultimately yield the specification of a service or protocol.

To allow for a realistic description of concurrency of inputs
and outputs and an unambiguous semantics when mapping the
+cation onto the implementation, an IP is assumed to elapse
in time, it is not abstracted to an infinitesimally small (atomic)
moment in time. The current temporal ordering operators and
time performance predicates are based on these characteristics.
The temporal ordering operators thus allow for such things as the

sequential and parallel ordering of IP’s as well as the possiiility
of mutual disruption of IP’s which can be used to express such
aspects as collision problems in disconnect phases.

The model is independent of the choice of data types and
operations on data types. To promote coherence within the FDT
group, Subgroup C will use Pascal for these aspects of the
language.

B. Statw of the FDT

The first framework of the language was available at the FDT
Washington meeting (October 1981) in document WASH-7. The
technique has shown promising results. Although improvements
to the language elements are possible and necessary, trial speafi-
cations have shown that rather complex specifications indeed can
be kept concise. The eariy draft of the tutorial document reflects
the status as of mid-1982. It contains the first four chapters and
an annex which contains a fairly complete description of the
transport service, demonstrating the use of the language. More
trial specifications are available and in preparation.

C. Current Work

since the drafting of the early workmg documents, Subgroup C
has paid considerable attention to the formal semantics of the
model and language elements (Chapters 5-7). The formal
semantics must provide the mathematical basis of the language,
which is necessary for the development of a speufication “meta-
theory” which contains proof rulcs for such things as proving that
a service is rendered by a protocol (plus lower level service) and
proving that an implementation complies with a +cation.
This compliance aspect is extremely important and leads to such
considerations as balancing the model and language concepts
between conciseness, which is necessary to keep a specification
surveyable and perspicuous, and precision, which is necessary to
avoid overspecrfication. Thus the work on formal semantics pre-
eminently provides criteria for judging whether or not the formal
model and associated language elements can precisely and satis-
factorily specify OS1 protocols and services.

This work has provided evidence that, for example, the repre-
sentation of a SeMce Primitive by a angle IP, i.e., without giving
the Service Primitive an inner temporal ordering structure, does
not always produce an adequate speufication. Expenence with
the description of data primitives, flow control, segmenting, the
precise moment of disconnection, and other problems has shown
that at least some of the Service Primitives have to be decom-
posed into more elementary units of information inputs and
outputs that have a (partial) temporal order.

For this elementary unit of information input and output,
Subgroup C has adopted the term “event,” which can be consid-
ered as a simple interaction primitive. The event concept allows
more powerful (but when necessary also extremely simple) con-
structions for such things as Service Primitives: a process of any
complexity, rather than just a simple input or output of a
message, can be used to model a Service Primitive.

For a more detailed discussion of the use of the event concept
the reader is referred to the most recent description of the model
in the tutorial document.

Using the same set of temporal ordering operators it is possible
to construct Service Primitives and Protocol Data Units from
events, and again order these to get “higher order” compositions
which will ultimately yield the +cation of a senice or
protocol. Within this framework, Subgroup C is now studying the
characteristics and potential refinements of the formal semantics

1360 PROCEEDINGS OF THE EFE, VOL. 71, NO. 12, DECEMBER 1983

of the temporal operators in order to express their semantical
properties in terms of well-defined mathematical properties. Sub-
group C considers the availability of a mathematical theory of the
ordering operators of extreme importance for a successful treat-
ment of the difficult problems of compliance. Subgroup C ex-
pects that the outcome of this study may affect (the notation of)
some language constructs. Moreover, it expects that after comple-
tion of this study, the contents of Chapters 5-7 will quickly be
stabilized.

APPENDIX I
SUBGROUP B LANGUAGE: A SAMPLE SPECIFICATION

The following is an example of the Subgroup B method of
protocol description in use taken from Section 3.6 of the Sub-
group B tutorial document. It is a specification of an alternating
bit protocol. Although the example shows many of the basic
constructs of the language, simplicity dictates that some of the
features of the language not be shown here. It is hoped that the
example will serve as enough of an introduction to the technique
to make its form clear to all readers and to interest experts in
studying the full Subgroup B tutorial.

The first section of the example contains some declarations of
constants and types, in a style familiar to a reader of Pascal. One
obvious addition is the notation “. . . ” which is used to indicate
that the specifier is leaving the interpretation to the implementor.
Often this is accompanied by a comment to guide the implemen-
tor in his choice.

A notation was needed to indicate the properties of the con-
nections between modules. These are called “channels.” Each
channel may have players, the roles of which are indicated in
parentheses after the channel name. The various interface events
of a channel are indicated after the role list. For each role, the
events that the player may initiate are listed along with their
parameters. These parameters are available within^ a transition
that is initiated by the event.

The module header line includes names for the channels it uses
as well as an indication of the role the module plays on that
channel. Thus the Alternating-Bit module is the Provider of the
U channel, which is a Vaccess-point channel. The inputs from
this channel and from the N channel are placed in a common
queue. The U-access-point channel supports three kinds of inter-
face events. Two of these may be initiated by the User (and are
thus inputs to the Alternating-Bit module), and one of these is
initiated by the Provider (and is thus an output of the module).

Following the module header, variables local to the module are
declared. Although not used in the example, if there were any
labels or types local to the module, they would precede the
variables, as they do in Pascal. Then the major states and major
state sets are declared. State sets are a convenient way to specify
that a transition may take place from any of several major states.

Next is an initialization section. In this, the major state and the
variables are given initial values. This determines the initial state
of the module.

Then functions and procedures are declared. In addition to the
standard Pascal definitions, either the keyword “primitive” or
the notation “. . .” is used to indicate that the details are left to
the implementor. Often, the choice of a data structure and the
details of the primitives must be coordinated choices. In the
example, the choice of the structure of “buffer-type” will de-
termine the details of the procedures “store,” “remove,” and
“retrieve.” Furthermore, the actual details of these structures and
the routines that manipulate them are not particularly relevant to
the action of the protocol. Output from a module over a channel
is specified by the keyword OUT (or perhaps OUTPUT, the choice

of the keyword is still under study). The actual channel and event
are indicated by naming the channel, followed by a “.”, followed
by the output interaction with its parameters.

Finally, the transitions are listed. The clauses correspondmg to
the keywords “from,” “to,” “when,” are all optional, and may
appear in any order, and may be nested (though they are not in
this example). They describe the major state before the transition
and after the transition and the required input, respectively. The
“provided” clause describes an enabling predicate that must be
satisfied for the transition to take place. An optional “priority”
may be assigned to any transition.
Once the input is listed, the parameters associated with the

input may be accessed in much the same manner as the fields of a
record within the scope of a “with” statement. This enhances the
readability of the resultant specification.

Notice the transition from state ESTAB back to itself when an S.
TIMERJeSpoIlX occurs. This corresponds to the case in which the
retransmit timer expires for data that have already been acknowl-
edged. In this case, clearly nothing need be done.

The specification of the action of the timer is included in the
full Subgroup B tutorial document.

const
retran-time = 10; (* retransmission time *)
-PtY
null

= 0; (* ompty buffer *)
= 0; (* place-holder for

sequence in ack *)

type
data-type = . . .:
seq-type = ... : (* for alternating bit,

id-type = (DATA, ACK);

ndata-type =
timer-type = (retransmit) :

record

use 0..1 *)

id: id-type;
data: data-type;
seq: seq-type;

end:

record
=g-tyPe =

msgdata: data-type;
mgseq : seq-type :

end :
buffer-type = . . .:
int-type = ... ; (* usually ‘integer’ *)

(* channel definitions *)

channel U-access-point(User, Provider);
by User:

SEND-request(UData: data-type);
RECEIVE-request;

RECEIVE-response(UData: data-type);
by Provider:

channel S_access-point(User, Provider);
by User:

Timer-request(Name: timer-type:
Time:int-type);

by Provider:
Timer-response (Name: timer-type) ;

channel N-access-point(User, Provider);
by User:

by Provider:
Data-request(NData: ndata-type);

Data-response(NData: ndata-type);

(* Module definition *)

module Alternating-Bit
(U: U-access-point(Provider) common queue;
N: N-access-point (User) c-n queue:
S: S_access-point(User) individual queue);

VISSERS et d.: FORMAL DESCRIPTION TECHNIQUES 1361

var
send-seq: seq-type;
recv-seq: seq-type;
send-buffer: buffer-type;
rem-buffer: buffer-type;
Plq: =g-type :

state:

EITHER = [ACK-WAIT, ESTAB];
(ACK-WAIT, ESTAB);

initialize
begin

state to ESTAE;
send-seq := 0;
recv-seq := 0;
send-buffer := empty;
recv-buffer := empty;

end;

predicate Ack-OK(NData: ndata-type);
begin

Ack-OK := NData.id = ACK
and (NData.seq = send-seq)

end ;

procedure deliver-data(msg: nsg-type);
begin

out U.RECEIVE-response (msg.msgdata)
end :

procedure inc-recv-seq;
begin

end :

procedure inc-send-seq;
begin

end :

procedure remove(var buf: buffer-type;

primitive;

recv-seq := (recv-seq + 1) mod 2

send-seq := (send-seq + 1) mod 2

msg: msg-type) ;

function retrieve(buf: buffer-type): msg-type;
primitive:

procedure send-ack (msg: msg-type) ;

begin
var a: ndata-type;

a.id := ACK;
a.data := msg.msgdata;

out N.DATA-request (6)

a.seq := null:

end ;

procedure send-data(msg: msg-data);
var 8 : ndata-type;
begin

S.id := DATA;
s.data := msg.msgdata;
s.seq := 9g.msgseq;
out N.DATA-request(s)

end :

procedure store(var buf: buffer-type;

primitive;

(* transitions *)

trans

begin
from ESTAB to Am-WAIT when U.SEND-request

msg: msg-type) ;

p-msgdata := m t a ;
p.msgseq := send-seq;
store(send-buffer,p) :
send-data(p) ;

from ACK-WAIT to ACK-WAIT when S.TIPIER-response
provided Name = retransmit

begin
p := retrieve(6end-buffer) ;
send-data (p) ;
out S.TIIIER-request(retransmit, retran-time)

end ;

from ACK-WAIT to ESTAB when N.DATA-response

begin
provided Ack-OK(NData)

remve(send-buffer, NData.msg);
incr-send-seq;

end;

from ESTAB to ESTAB when S.TImR-response

begin
provided Name = retransmit

(* do nothing: the message that caused
this timer to be set has been
acknowledged. *)

end :

from EITJiER to SAKE when N.DATA-response

begin
provided NData.id = DATA

q.msgdata := --.data;
q.msgseq := NData.seq;
send-ack (q) ;
if NData.seq = recv-seq then

store(recv-buffer, 9);
incr-recv-seq

begin

end
end:

from EITHER to SAHE when U.RECEIVE-request

begin
provided not buffer-empty(recv-buffer)

q := retrieve(recv-buffer);
deliver-data (9) :
remove(recv-buffer, q)

end ;

APPENDIX I1
SUBGROUP C LANGUAGE: A SAMPLE SPECIFICATION

In this Appendix, we give a formal specification of a simplified
Transport Service. The example reflects the status of the language
as of mid-1982. We hope that the semantics of some of the
interactions and interaction parameters can be understood without
a detailed elaboration. A specification of the Transport Service
using the most recent language definition is contained in the
Subgroup C tutorial document of August 1983 [SI.

Briefly, the Transport service (TS) provides transparent trans-
fer of data between Session Entities (SE's), relieving these entities
from any concern about how the transfer is to be achieved. The
service provided is connection oriented; it is necessary to estab-
lish, use, and terminate a two-point Transport Connection (TC).
The TS enables the SEs to request TC parameters and a class of
service quality selected from a predefined set of classes. The SEs
may choose to accept or refuse a request for connection. The
established TC represents a two-way simultaneous data path
between a pair of SEs.
An SE can terminate th is TC and inform the correspondent SE

of th is termination. If data are undelivered at the time of the
termination request, it is not guaranteed that they will be delivered
at all. If the TS is unable to maintain the quality of service agreed
upon, it terminates the TC and informs both session entities.

There are two types of data that can be transported by the TC:
Normal Data (ND) and Bpedited Data (ED). N-D is of arbitrary
size and ED is of limited size. It is reqhed that the ED be
delivered at least as fast as the ND.

The part TS describes the service defined above. Each SE is
charactzed by a distinct transport address (here apl and ap2).
TA denotes the set of these addresses. Each access point ap:TA.

TS interacts with SEs by means of interactions. There arethe
following interactions:

-

1362 PROCEEDINGS OF THE IEW, VOL. 71, NO. 12, DECEMBER 1983

COMectiOIl request and GOMeCtiOn indication,
knect ion &eptance request and connection ~cceptar~ce

indication (currently called: Connection response and
Connection confirmation),

Disconnect request and Disconnect indication,
Formal Data request and Normal Data indication,
Bpedited Qata request and Bpedited Data indication.

In the specification they are represented by the above underlined
letters. The direction of information exchange follows the request
and indication conventions.

In all interactions, the first pair of indices gives the source and
destination transport addresses.

The parameters in Ar and Ai whose range is the set CLASS
gives the quality of the service provided by the TC. The v m
such a parameter denotes a tuple of values: (throughput ratel,
- throughput rate 2, _average _transit delayl, g v e r e pansit delay&
maximuin connection setup time).The numbers 1 and 2 i n the
above parameters serveastinguish between the possible values
the TC can have in different directions. The parameters with
range CAUSE denote the reason why a disconnect interaction
takes place; the parameter p3 in Di denotes the originator of the
disconnect. The parameters with range NDATA or EDATA
denote the data transmitted during the interactionND an=

The simple TS has only two access points, apl and ap2, and
the connection can be set up only from access point apl (address-
calling session entity) to access point ap2 (address-called session
entity).

The defiition of the temporal ordering used in this example is
based on the assumptions that the primitive activities to be
ordered have no explicit inner temporal structure and have finite,
positive duration. Therefore, only the beginning and/or end of
an activity may be temporally related to a beginning and/or end
of another activity.

To order such activities we use two techniques: 1) temporal
ordering primitives, seq, conc, muterm, and select, which specify
a regular temporal ordering o f , an- guards which
enable an execution of a phase or activity when certain condi-
tions are satisfied and in this way allow irregular temporal
orderings. An additional restriction on the temporal ordering in
which activities may be executed may be imposed by the parame-
ter value dependence.

The following defiitions of the temporal ordering constructs
apply when these constructs are enabled and not disabled. The
activities a1 through a,, and b, through b, denote phases. A
phase can be an interaction or a temporal construct of interac-
tions.

ol, CI z, . . . , a, are temporally ordered75 that a phase a, + begim

-

- seq (Q ~ , C I ~ , a 3 , . . . , a,). Here, seq specifies that phases

part simple transport service(access points apl,ap2)

at a d - .
disruptible interactions
NDr(data:=),
NDi (data:=),
E D r (d a t a : G) ,
E D i (d a t a : g) ,

mi-}, called: (ap21, class:=),
mu disru t ible interactions

A i (c l a s s : g) ,

Dr(reason:CAUSE),
D i ((o r i g i n z o n) : {(pZ,p3)ipZ="user' & p3:CAUSE

- or pZ='provider~3="undef ined-)}

some time after the phase ai has terminated. seq has not begun
when a, has not begun. seq terminates when aperminates.

conc (a l , a 2 , a 3 , ... , a,). Here, conc specifies that phases
U ~ Z U ~ , , a , are temporally uiiiiited so that each may
begin and hence terminate independently of each other. conc has
not begun when none of the ai has begun, and is terminatxwhen
all ai have terminated. Note that in the example, the temporal
independency of the phases in the conc construct is sometimes
restricted by a value reference, as explained hereafter and shown
in the example.

select (a l , a , , a3 , * , a,) speclfies that any one but only one
of the phases a,, a,, a3, * * * , a , may begin. The begmning of a
phase excludes the execution of other phases. select has begun
when one of the phases ai has begun and terminarwhen that ai
has terminated.

muterm (a l , a,, a 3 , . . * , a,) specifies a phase composed from
phases a,, a, , . * . , a , ordered in such a way that all a's are
allowed to start independently provided no other a has terminated.
When an a, terminates, the start of those a's that are not yet
started is prohibited, those a's that are active and can be dis-
rupted are disrupted, and those a's that are active and cannot be
disrupted terminate independently. muterm terminates when each
of its constituting ai is either prohibited to begin, disrupted, or
terminated. muterm can be considered to be a weak form of select.

The value of function b-time ((activity reference)), use-
guards, depends on the moment of the function evaluation. If at
this moment the concerned activity has begun, b-time ((activity
reference)) = begin time of the referred activity. Otherwise it is
undefined. e-time ((activity reference)) is analogous to b-time,
only it delivers the termination time of the referred activity.

A particular value a parameter (or an n-tuple of parameters)
can have during an interaction may be a value (n-tuple of values)
that another parameter (n-tuple of parameters) has obtained
during some other interaction. The value function, used in a
reference to a particular interaction, isperformed only when the
parameters of the referred interaction are established, in other
words when the referred interaction at least partially took place.
In this way an implicit restriction is imposed on the temporal
ordering of the interaction which uses the value reference.

We can associate with a phase or an ordering primitive a
timing specification " (t , , t , , t3),'' where 0 Q t , Q t , < t , and t ,
denotes the lower bound, t3 the upper bound, and t2 the average
value in some time units that a phase or a temporal ordering
primitive might take. For example, if in an interaction, data are
exchanged between entities, the t , , t , , and t3 in the notation
a (t l , t , , t 3) are measures of the throughput.

In the following formal description of the simple TS we added
comments hoping that they make the specification self-contained.
These comments start with a " %" character.

-

-

-

X interactions at access point apl of ca l l ing sess ion
X entity
X Normal Data request interaction
X Normal Data indication interaction
X Expedited Data request interaction
X Expedited Data indication interaction

X Connection request interaction
X Acceptance indication interaction

X Disconnect request interaction
X Disconnect indication interaction

VISSERS et ai.: FORMAL DESCRIPTION TECHNIQUES 1363

- a t ap2
d is rupt ib le in te rac t ions
NDr (dat a:=),
NDi (data:=),
E D r (d a t a : e) ,
E D i (d a t a : g) ,

non d is rupt ib le in te rac t ions
Ci(calling:{apl}, called:{ap2), class:=),
Ar(class:=),

-

X interactions at access point ap2 of cal led session
X en t i ty
X Normal Data request interaction
X Normal Data ind ica t ion in te rac t ion
X Expedited Data request interaction
X Expedited Data indication interaction

X Connection indication interaction
X Acceptance request interaction

D ~ (r e a s o n : e) , X Disconnect request interaction
Di((origin,reason): {(p2,p3)lp2="user' & p3:CAUSE

or p 2 = " p r o v l d e r ~ 3 = ' u n d e f i n e d ") ~
X Disconnect Indication interaction

-

X data parameter denotes normal or expedited data transmitted during an interaction
x class parameters denote the performance parmeters
X reason parameter decribes why a user - in i t ia ted Disconnect request took place
X origin parameter, which has values 'provider" or -user", denotes the originator of a Disconnect i rd i ca t ion

define X

CLASS <=(thrpl,thrp2.avtrdell,avtrdel2,maxconsetup) X
x
x

MAX-CON-SETUP <= e (m a x c o n s e t u p , C r at apl) ,
AVERAGE1 <= e (a v t r d l 1 , A r ap2),
THROUGHPUT1 <- e (t h r p 1 , A r 5 ap2).
AVERAGE2 <= e (a v t r d l 2 , A r ap2).
TBROUGEPUT2 <= e (t h r p 2 , A r at ap2)

EDATA-FASTER-TMN-NDATA

<= & j : ((b - t ine ((j)GEDr at from)
< b- t ime((i)G NDK at from)

)

AVERAGE-DELAY(k,avtrdelay)
<- (SUM(j: 1. .k-1):

(b - t i m e ((j) e NDi at t o) - b-time((j)$ NDr at from)
7
+time - b- t ime((k)e NDr at from)

)/k < avtrdelay

TRANSPORT(from,to,thrp,avtrdel)<-

=([i:pos i n t]
vhen EDATA FASTER THAN NDATA & -

AVERAE DELAy(i,a%rdel)
- do NDi(eT(i)g NDr at from) to) ,

end define

x
X

x
x

define means the beginning of a s e t of abbreviations

<= means 'is abbreviated by'
CLASS i s the name of an abbreviation; do not confuse
CLASS v i t h t h e s e t g, which i s l e f t undefined

maximum connection setup delay value
average t ransi t delay in one d i rec t ion
target throughput in one d i rec t ion
average t ransi t delay in opposi te direct ion
target throughput in opposite direction

All those EDK that vere accepted before i-th NDr must
be delivered before i-th NDi

x
x

Interact ions a t apl :
C r , AI

In t e rac t ions a t ap2:

x NDr, NDi NDK, mi
x EDK, EDi EDr , EDi

Cf, A r

x Sirple Transport Service

X the sum of k t ransi t delays for a normal data uni t
X to c ross the se rv ice part, divided by k nust be
X smaller than the average delay

X abbreviation of normal and expedited data transport
x i n one d i rec t ion

X Normal Data in te rac t ions happen In sequence
X Expedited Data request inter. also happen i n sequence
X thrp here as a measure of the throughput

X Norm. Data ind ica t ion happen i n t h e same sequence as
X Norm. Data request but not faster than Exp.Data ind.
x and satisfying the average delay requirement
% Implicit temp. order ing res t r ic t ion On E by
X parameter value reference, using e
X use of guard
X Expedited Data ind's happen i n t h e same sequence a8
X Exp. Data requests and with the same values.

X end of abbreviations section

1364 PROCEEDINGS OF THE VOL. 71, NO. 12, DECEMBER 1983

rmt em
(seq(vhen t ime < MAX-CON-SETUP + b-time(Cr g a p l)
- do A i (e (A r g ap2)),

TRANSPORT(apl,ap2,THROUGEIPUTl,AVERAGEl),
),

select (
Dr(reasonl) ,
Di(”user”,value(Dr at apz)),
Di(“ p r o v i d c u n d e K n e d ”)

1
)s

1,

select(
1 .

D r (r e a s o d) ,
D i (“ u s e r ’ , e (D r g apl) ,
Di(”provider”, “undefined”),

1

1
end p a r t

X Concur ren t ac t iv i t i e s a t ap l and ap2 are taking place.
X S p e c i f i c a t i o n o f a c t i v i t i e s a t a c c e s s p o i n t apl:
X F i r s t i n t e r a c t i o n t h a t is a l loved t o t ake p l ace is
X Connect ion request in teract ion. For this very s imple
% TS i t must ho ld t ha t sou rceap l and destination-ap2

X Performance specification of connection set up param.
X I n t e r a c t i o n A i can t ake p l ace a f t e r A r took place,
X an example of temporal ordering restriction by value

X Connection use phase. See def ine sec t ion .
X dependence

% t h e select al lows one of the fol loving interact ions:
X 1 o c a E (a t ap l) i n i t i a t ed D i sc . req
X remote user (a t ap2) in i t ia ted Disc . ind
X p r o v i d e r i n i t i a t e d Disc. ind.
% se lec t t e rmina tes vhen one Disc. has taken place.
X Terminat ion of se lec t d i s rupts o f A i and
% TRANSPORT, which t e r d n a t e s mterm
X
X The a c t i v i t i e s a t ap2 a r e s i m i l a r t o a c t i v i t i e s a t a p l
X Value ref . implies that C i c an t ake p l ace a f t e r Cr
X took place, the parameter values of C i a r e t he va lues
X of parameters of C r .
X Rest i s s i m i l a r t o a c t i v i t i e s a t a p l
X In t h i s e x a a p l e no negot ia t ion of Qual i ty of Service

ACKNOWLEDGMENT

The authors wish to thank John Day for his work in setting up
the OS1 FDT group as well as for his helpful comments on a
draft of this paper.

BIBLIOGRAPHY

T. Blumer and R. L. Tenney, “An automated formal specification tech-
nique for protocols,” Comput. Networks, vol. 6. pp. 201-217, 1982.
G. V. Bochmann and C. Sunshine, “Formal methods in communication
protocol design,” IEEE Trans. Commun., vol. COM-28, pp. 624-631,
Apr. 1980.
G. V. Bochmann, E. Cemy, M. Gagne, C. Jard, A. Lkeille, C. Lacaille,
M. Maksud, K. S. Raghunathan, and B. Sarikaya, “Some experience with
the use of formal specifications,” in Protocd Specification. Testing, and

Protocol Specification. Testing, and Verification, Idyllwild, CA, May
Verification, C. Sunshine, Ed. (Proc. IFIP WG6.1 2nd Int. Workshop on

1982). Amsterdam, The Netherlands: North Holland, 1982. pp. 171-
185.
E Brinksma, “An algebraic language for the specification of the tem-
poral order of events in s e n i c e s and protocols,” in Proc. European
Teleinformatics Conf., pp. 533-543, Varese, Oct. 1983.
G. J. Dickson and P. E de Chazal, “Status of CCITT description

techniques and application to protocol specification,” this issue, pp.

[6] International Organization for Standardization, “Draft Tutorial Docu-
ment: Concepts for describing the OS1 architecture,” IS0/TC97/
SC16/ N1346, Dec. 1982.

[7] International Organization for Standardization, “Draft Tutorial Docu-
ment: Extended finite state machine specification,” ISO/ TC97/ SC16/

[8] International Organization for Standardization, “Draft Tutorial Docu-
N1347, D e c . 1982 (latest revision, May 1983).

WGL/N157. Aug. 1983.
ment: Temporal ordering specification language,” ISO/ TC97/ SC16/

[9] International Organization for Standardization, “Draft trial specification
of a Class 2 Transport Protocol,” ISO/TC97/SC16/WGl/N117, Aug.
1983.

[lo] S. Schindler, U. Flasche, and D. Altenkriiger, “The OSA Project: Formal
specification of the IS0 Transport Service,” in Proc. Computer Network

[l l] R. L. Tenney, “One formal description technique for I S 0 OSI,” in Proc.
Symp. (NBS), pp. 136-160, D e c . 1980.

IEEE Int. Conf. Communications (Boston, MA, June 1983), pp.
12%-1300.

[12] J. Vytopil and C. A Vissers, “Interaction primitives in the formal
specification of distributed systems,” Twente Univ. Tech. Rep., Feb.

[13] R. Schwartz and P. M. Melliar-Smith, “Temporal logic specification of
1981.

distributed systems,” in Proc. 2nd Int. Conf. on Distributed Sys tem
(Paris, France, Apr. 1981).

[14] R. Milner, A Calculus of Communicating Sys tem. Berlin:Springer, 1980.

1346-1355.

